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Research Agenda: My research vision is to develop principled approaches for measuring
and evaluating algorithmic decisions made at each stage of the machine learning pipeline. I want
to contribute to a collaborative interdisciplinary research program where we bridge the growing
gap between technical advances and socio-political conditions. Looking ahead, I plan to be at the
forefront of developing methods that promote fairness and reliability in generative Ai.

From initial conception to deployment, researchers and practitioners make critical decisions at
each stage of the machine learning pipeline, the significance of which can be quantified by evaluating
alternative options. For instance, there can be multiple models with near-optimal performance for a
given prediction task. If model outputs vary significantly between these similar models, then the
decision to choose one model over another has relative importance. Further, the model selection
decision might come under scrutiny if there exists a similar model with better fairness properties
that could have been selected. Even long before deployment, when translating high-level goals into
tractable predictive tasks, there may be many reasonable target variable options worth considering.
Once again, target specification becomes particularly high stakes when one target leads to more
disparate treatment compared to other options. In each case, the significance of these decisions
can be characterized by understanding what changes over possible alternatives. In what follows, I
outline my previous research and a few future directions.

1 Predictive Multiplicity

In machine learning, model multiplicity is the existence of multiple models that perform equally
well for a given prediction task (also known as the “Rashomon effect”). This set of near-optimal
models with similar performance but different characteristics is referred to as the “Rashomon set”.
Predictive multiplicity examines how predictions change over this Rashomon set. My previous
research introduces frameworks for studying predictive multiplicity in different settings.

As in the standard predictive multiplicity setting [11], I begin with a baseline model, h0, that is
the solution to an empirical risk minimization (ERM) problem of the form minh∈H L(h;D), over
a hypothesis class, H, with loss L( · ;D). In this context, one can consider the ϵ-Rashomon set,
which is the set of all models that achieve near-optimal loss.

For a baseline model h0 and error tolerance ϵ > 0, the ϵ-Rashomon set of competing models is
the set of classifiers that satisfy L(h;D) ≤ L(h0;D)+ ϵ. In [11], H is assumed to be a class of binary
classifiers and one of the predictive multiplicity measures introduced ambiguity of a prediction
problem: the proportion of points in the training dataset assigned conflicts (1[h(xi) ̸= h0(xi)]) over
the ϵ-Rashomon set of competing models. The discrepancy of a prediction problem is the maximum
proportion of points in the training dataset assigned conflicts (1[h(xi) ̸= h0(xi)]) by the single worst
case competing model.

Predictive Multiplicity in Probabilistic Classification [21]: Probabilistic classification
is often incorporated into real-world risk assessment tasks to inform decisions. For instance,
probabilistic classifiers that predict consumer default risk are used by lenders to underwrite loans. I
developed a framework for investigating predictive multiplicity in this setting. Measuring multiplicity
in probabilistic classification is complicated by the need to clarify the meaning of “conflicting”. In
effect, what constitutes a conflicting risk prediction can change across applications (e.g., predictions
that vary by 5% or 30%). Likewise, what constitutes a “competing” model can change across
applications. My work addresses both of these problems by introducing methods that allow users to
specify what is “competing” (near-optimal metric) and what is “conflicting” (deviation threshold).
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To this end, I consider loss, accuracy and calibration error as possible near-optimal metrics and
redefine ambiguity and discrepancy in this setting. I also introduce the viable prediction range which
captures how individual predictions change over the Rashomon set.

The viable prediction range is the smallest and largest risk estimate assigned to example i over
competing models in the ϵ-level set. The (ϵ, δ)-ambiguity of a probabilistic classification task over a
sample S is the proportion of examples in S whose baseline risk estimate changes by at least δ over
the ϵ-level set. The (ϵ, δ)-discrepancy of a probabilistic classification task over a sample S is the
maximum proportion of examples in S whose risk estimates could change by at least δ by switching
the baseline model with a competing model in the ϵ-level set.

Methodology: Our optimization based methods compute our measures reliably. To compute
ambiguity and viable prediction ranges, I construct a pool of candidate models that assign a specific
risk estimate to each example. From these models, I select those that have performance within ϵ of
the baseline model as the set of competing models. Specifically, for each threshold probability p ∈ P ,
I train a candidate model h such that the probability assigned to the example is constrained to the
threshold p. To compute discrepancy, I formulate a mixed-integer non-linear program (MINLP)
which involves constructing a linear approximation of the loss using an iterative, outer-approximation
method to solve. This method is exact for computing discrepancy in terms of near-optimal loss. For
other metrics, we can again treat the intermediate solutions to the outer-approximation algorithm
as candidate models and use these candidates to recover a lower bound similar to the method used
to compute ambiguity and viable prediction ranges. Using synthetic data, I also presented the first
study providing insight into the kinds of data characteristics that give rise to predictive multiplicity.

Predictive Multiplicity Under Resource Constraints [17]: In this work, I introduce a
framework for assessing predictive multiplicity in the presence of decisions under resource constraints
to extend previous analysis to predictive allocation tasks. In practice, there is often only a finite
amount of benefit, burden, or scrutiny that a system is able to allocate. This means that the set of
“good models” should only include models that satisfy the resource constraint. In this work, I define
a new measure of predictive multiplicity (top-κ ambiguity) and present a mixed integer program
(MIP) to calculate this ambiguity measure for linear models. Note that in binary classification [11],
a prediction problem could have high ambiguity if the positive classification rate, 1

n |{i : h(xi) = 1}|,
differs greatly between h0 and models in Hϵ(h0). That is, a high ambiguity may simply result from
models that allocate a very different number of resources. Thus, extending to incorporate resource
constraints enhances predictive multiplicity research in a number of ways.

Given a prediction model h and resource cap κ, I let Top(i,h,κ) = 1[τi(h) ≤ κ] be the indicator
of whether instance i is ”in the top-κ” when ranked according to the predicted values h. This work
defines two notions of ambiguity in this setting. The (ϵ, κ)-ambiguity (all) over a sample, S, is
the proportion of examples for which the top-κ decision changes over the ϵ-Rashomon set. The
(ϵ, κ)-ambiguity (top) over a sample, S, is the proportion of top-κ examples according to h0 that fall
outside the top-κ for some models in the ϵ-Rashomon set.

Methodology Enhanced: My prior work involves constructing a pool of candidate models that
change individual predictions [21]. From that pool of models, those with near-optimal performance
are selected to compute ambiguity. These methods are indirect in that the MIPs do not directly
constrain these candidate models to be within the ϵ-Rashomon set. Under resource constraints,
I develop a MIP that does include this constraint by theoretically showing how to include a
constraint that neatly characterizes the ϵ-Rashomon set for linear models. Additionally, I show
theoretically that (i) one can efficiently determine that many points are provably not flippable
over the ϵ-Rashomon set; and (ii) one can identify a subset of flippable points by solving a proxy
optimization problem with a closed-form solution that produces a w ∈ Hϵ(w0) that may flip some
points into the top-κ. This means that in practice, we only need to solve the computationally
expensive MIP for a very small subset of points whose flippability remains undetermined following
the efficient filtering steps.
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2 Target Specification

Multi-Target Multiplicity: Flexibility and Fairness in Target Specification under
Resource Constraints [17]: Real-world problems rarely present themselves as fully formed
machine learning tasks [13]. Critically, it is often not clear what target should be predicted to help
decision makers achieve their goals [7, 12]. It is far from obvious, for example, how employers should
go about making such choices in their hiring practices: if the goal is to hire the “best” people, what
exactly should the model be predicting [1, 9, 12]? For a sales position, employers might choose to
predict annual sales figures. But they could alternatively choose to predict how well the applicant
will work with others, whether customers will actually enjoy interacting with the applicant, etc.
Even in domains where target choice might seem more obvious, there can still be a good deal
of uncertainty. For example, while it might seem self-evident that creditors should be predicting
default, what constitutes “default” is not a given. Creditors need to make an affirmative choice
about the number of months of missed payments that ultimately count as “default” [8]. In some
cases, the decision is not based on just one chosen target, but instead a combination of targets. For
example, many algorithmic tools currently used in criminal justice and human services function by
aggregating predictions of several different targets, ranging from different types of criminal justice
system encounters, to mental and physical health outcomes, to measures of housing stability [10, 14].

A recent line of work has explored the implications of this flexibility in target variable choice
for fairness. Prior work does not, however, offer a more general mathematical or computational
framework for characterizing the extent to which target variable choice affects individuals’ outcomes
and selection rate disparities across groups. My work fills this gap [17]. By analogy to predictive
multiplicity, in the motivating “multi-target” setting—where there are many possible reasonable
prediction targets to choose from—we can consider the set of “good models” that arises from,
say, models that predict any of the individual targets well, models that predict a combination of
targets well, or that combine the predictions of single-target models. If each of the possible targets
individually has merit as a basis for predictive allocation, then any combination of those predictions
is arguably also a reasonable candidate model.

3 Racism and Algorithms

The realization that algorithms can perpetuate or exacerbate racial disparities in society has spurred
significant research in the field of algorithmic fairness. While contending with racism has been
a primary motivation and driver of research in this area, developing strategies to correct and
prevent racist outcomes is an ongoing challenge partially because modern forms of racism have
evolved to be quite nuanced. Even outside of algorithms, modern racism tends to be concealed by
seemingly “race-neutral” methods and rhetoric making it hard to identify and therefore address.
How do we solve a problem that we cannot see? Scholars often refer to this modern form of racism
as colorblind racism which occurs when we observe a racially discriminatory outcome but the
mechanism responsible for said outcome appears to have nothing to do with race [3].

This colorblind racism becomes particularly enhanced when coupled with modern advances in
technology [2]. Similar to work on colorblind racism, there is an emphasis in recent studies on
clarifying the concealed nature of racism functioning in the context of algorithms. While this type
of work tends to span various technological disciplines i.e. robotics, search algorithms, etc., there is
limited work on how this more subtle form of racism arises within specific sub-fields of computer
science. I have been exploring anti-Black racism primarily to facilitate understanding and clarify
terms of discussion on the topic in the algorithmic setting. In my recent work, I discuss colorblind
racism in the context of algorithmic fairness research [16].

Since my dual undergraduate concentration in Africana studies and Physics, I have maintained
a commitment to collaborations across disciplinary lines. Following the 2020 Black Lives Matter
protests, my collaborators and I used a few-shot domain adaptation approach from natural language
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processing to reveal the prominence of positive emotions (encompassing, e.g., pride, hope, and
optimism) in tweets with explicit pro-BlackLivesMatter hashtags and correlated with on the ground
protests [4]. This work illustrates the power of online activism in support of social movements.
Joining a collective call to support Black public health experts and community organizers, I helped
organize and document community conversations on using data as a tool for social change during the
2020 pandemic [20]. Also, I led a team of software engineers and data scientists in a public service
project where we documented the challenges in automated web-scraping of COVID-19 data from
US state websites [19]. Another non-profit collaboration, I contributed to an examination of data
capitalism to help policymakers and activists understand how the extraction and commodification of
data as fundamentally intertwined with systemic racism [5]. I look forward to future opportunities
to contribute to these interdisciplinary collaborations.

4 Future Directions

Predictive Multiplicity in Generative Ai, Recommender Systems, Graphs, etc: I plan
to study predictive multiplicity in the generative Ai setting, which requires a slightly different
framing of the problem. Following the existing definition, I also plan to develop a framework
for analyzing predictive multiplicity for recommender systems and graph based models. I am
generally interested in exploring additional settings where model multiplicity invokes interesting
methodological opportunities.

Predictive Churn: ML models in modern applications are often updated over time. One
of the foremost challenges faced is that, despite increasing overall performance, these updates
may flip specific model predictions in unpredictable ways. In practice, researchers quantify the
number of unstable predictions between models pre and post update – i.e., predictive churn. In
recent work [18], I study this effect through the lens of predictive multiplicity – i.e., the prevalence
of conflicting predictions over the set of near-optimal models (the ϵ-Rashomon set). I show how
traditional measures of predictive multiplicity can be used to examine expected churn over this
set of prospective models – i.e., the set of models that may be used to replace a baseline model in
deployment. Further, I show that our approach is useful even for models enhanced with uncertainty
awareness. In the future, I plan to investigate how churn reduction methods might lessen predictive
multiplicity.

Reliable Deep Learning: Predictive multiplicity can be conceptualized as a type of predictive
arbitrariness as unfairness. Beyond the lens of fairness, this predictive inconsistency or arbitrariness
is also a practical concern in the deployment of many production machine learning models. What is
the relationship between uncertainty quantification methods and arbitrariness as unfairness (i.e.
predictive multiplicity)? Will methods from reliable deep learning prove to be more or less robust
to predictive multiplicity? Can uncertainty-aware models provide a signal for potential predictive
instability downstream? I am actively investigating these questions and plan to continue to do so.

Fairness in Generative Settings: Recent advancements in large generative models are
influencing algorithmic fairness discussions and current methods of fair classification are not
immediately relevant to the generative setting. I plan to develop methods that promote fairness
and reliability in generative Ai. In particular, I want to explore policy and downstream implications
of red-teaming methods which are adversarial probing techniques used to induce harmful outputs
then for updating the model to circumvent the harmful outputs. Initial studies [6] examine the
relationship between model size, model type and attack success. Building on this type of work,
I want to dive deeper into methods for ensuring safety in this setting. There are also interesting
interpretability and reliability questions in the context of multimodal learning (the combination
of different data modalities i.e. incorporating both image and text input). With collaborators at
Georgia Tech, I am studying cross-modal projections for fine-tuning domain-specific models [15].
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